
Data centers 

prepared for EGOI 2022 by Cheng Zhong 

 

Subtask #1 

Sorting the available machines in each of the n data centers and output the result directly, 

as there’s no service to be launched. 

➢ Time complexity: O(n2) or O(n*log n) 

 

Subtask #2 & #3 

Simulate the process. Using an array or vector to store the number of machines in each 

data centers. Using some O(n2) (subtask #2) or O(n*log n) (subtask #3) sorting algorithm 

to sort the data centers in descending order before launching each service, and deduct mi 

machines in each of the top ci data centers. 

➢ Time complexity: O(n2s) or O(n*(log n)* s) 

 

Subtask #4 

Instead of using quick sort or other comparison based sorting algorithms, using counting 

sort as there are at most 1000 machines in each data centers. 

➢ Time complexity: O(1000*s) 

 

Subtask #5 

As there’s only 1 data center being affected after each service is launched, we could move 

it to a proper position in O(n) time and keep the array still in descending order. 

➢ Time complexity: O(n*(log n) + ns) 

 

Alternatively, instead of using an array or vector to store the number of machines, using a 

priority queue. As ci is always 1, while launching each service, we only need to visit and 

change the root, so we only need O(log n) time to deal with each service. 

➢ Time complexity: O((n + s)*(log n)) 

 

Subtask #6 

After launching each service, the data centers can be divided into two parts: one just 

deducted mi machines each, another remains untouched. Each part remains its 

descending order. Therefore, we can merge these two parts like that in merge sort, and it 

only takes O(n) time to deal with each new service. 

➢ Time complexity: O(n*(log n) + ns) 

 

Motivation of providing this problem 

Sorting algorithms has great importance and is introduced in the very first chapters in 

Introduction to Algorithms and many other books. However, some students only learn that 

the best time complexity for comparison sort is O(n*log n), and the “sort” in C++ library 

provides such functionality. They don’t really understand what’s behind all these sorting 

algorithms. This task tries to help the students thinking about the stories behind the basic 

sorting algorithms, and how to take advantage of each of them. 


