SubsetMex

Nome	Subset Mex
File di input	standard input
File di output	standard output
Limite di tempo	1 secondo
Limite di memoria	256 megaottetti

Un *multiset* è una collezione di elementi simile ad un set, dove gli elementi possono ripetersi. Per esempio, il seguente è un multiset:

 $\{0, 0, 1, 2, 2, 5, 5, 5, 8\}$

Dato un multiset S definito sugli interi non negativi, e un intero obiettivo n non-negativo non presente in S, il tuo obiettivo è di inserire n dentro S usando ripetutamente la seguente operazione composta da S step:

- 1. Scegli un sottoinsieme T (anche vuoto) di S. In questo caso T è un insieme di interi distinti che appaiono in S.
- 2. Rimuovi da *S* gli elementi di *T* (rimuovendo solo una copia di ciascun elemento).
- 3. Inserisci mex(T) in S, dove mex(T) è il più piccolo intero non-negativo che non appartiene a T. Il nome mex sta per "minimum excluded".

Il tuo obiettivo è di trovare il minimo numero di operazioni da eseguire affinché n sia parte di S.

Visto che la dimensione di S potrebbe essere grande, ti viene data come lista $(f_0, ..., f_{n-1})$ di dimensione n, dove f_i è il numero di volte che il numero i compare in S. (Ricorda che n è l'intero che stai cercando di inserire in S.)

Input

La prima riga contiene un solo intero t (1 \leq t \leq 200) — il numero di testcase. Ogni due delle seguenti righe descrivono un testcase:

- La prima riga di ogni testcase contiene un singolo intero n (1 $\leq n \leq$ 50), rappresentante l'intero che va inserito in S.
- La seconda riga di ogni testcase contiene n interi $f_0, f_1, ..., f_{n-1}$ ($0 \le f_i \le 10^{16}$), rappresentanti il multiset S come descritto sopra.

Output

Per ogni testcase, stampa una singola riga contenente il numero minimo di operazioni necessarie per inserire n.

Scoring

Subtask 1 (5 punti): $n \le 2$.

Subtask 2 (17 punti): $n \le 20$.

Subtask 3 (7 punti): $f_i = 0$.

Subtask 4 (9 punti): $f_i \le 1$.

Subtask 5 (20 punti): f_i ≤ 2000.

Subtask 6 (9 punti): $f_0 \le 10^{16} \,\mathrm{e}\, f_j = 0$ (per ogni $j \ne 0$).

Subtask 7 (10 punti): Esiste un valore i per cui $f_i \le 10^{16}$ e $f_j = 0$ (per ogni $j \ne i$).

Subtask 8 (23 punti): Nessuna limitazione aggiuntiva.

Esempi

standard input	standard output
2	4
4	10
0 3 0 3	
5	
4 1 0 2 0	

Note

Nel primo esempio, inizialmente $S = \{1, 1, 1, 3, 3, 3\}$ e il nostro obiettivo è di inserire 4 in S. Possiamo:

- 1. Scegliere *T* = {} e *S* diventa {0, 1, 1, 1, 3, 3, 3}.
- 2. Scegliere $T = \{0, 1, 3\}$ e S diventa $\{1, 1, 2, 3, 3\}$.
- 3. Scegliere $T = \{1\}$ e S diventa $\{0, 1, 2, 3, 3\}$.
- 4. Scegliere $T = \{0, 1, 2, 3\}$ e S diventa $\{3, 4\}$.