
European Girls'
Olympiad in Informatics
EGOI - 2022
Antalya / Türkiye

SocialEngineering
Day1 Tasks

English (ISC)

Social Engineering

Problem Name Social Engineering

Input file Interactive task

Output file Interactive task

Time limit 5 seconds

Memory limit 256 megabytes

A social network consists of an undirected connected graph with n vertices and m edges, where
each vertex is a person, and two people are friends, if there is an edge between them.
Maria is a member of this social network. She likes challenging her friends to do various things.
This means that she first performs some simple task, and then challenges one of her friends to do
the same. This friend will then challenge one of their friends, who will challenge one of their
friends, and so on. It could happen that the same person gets challenged more than once, but
each unordered pair of friends can only take part in the challenge at most once. (Once a person A
challenges a person B, then neither person A nor person B can challenge the other again.) In other
words, the challenges will be a walk in the graph that never uses an edge more than once.
A person loses the challenge if it is their turn and they cannot challenge any of their friends. The
challenges are always started by Maria, and she rarely loses. Now the remaining n − 1 people have
decided to collaborate in order to make Maria lose the next challenge, and it is your job to
coordinate this effort.

Implementation
You must implement a function:
void SocialEngineering(int n, int m, vector<pair<int,int>> edges);

that plays the game on a graph with n vertices and m edges. This function will be called once by
the grader. The list edges will contain exactly m pairs of integers (u, v), meaning that an edge goes

between vertex u and vertex v. Vertices are numbered from 1 to n. Maria is always vertex 1. Your
function can make calls to the following functions:
int GetMove();

This method should be called whenever it is Maria’s turn, such as in the beginning of the game. If

SocialEngineering (1 of 4)

you call this method when it is not Maria’s turn, you will get the verdict Wrong Answer . The

method can return one of the following values:

an integer v, where 2 ≤ v ≤ n. This means that Maria challenges the person with index v. This
will always be a legal move.

0, if Maria resigns the game. Maria will always resign, if she has no legal moves. When this
happens, your program should let the function SocialEngineering return, and you will

get the verdict Accepted .

void MakeMove(int v);

This method should be called whenever it is not Maria’s turn. This means that the person with the
turn challenges the person v. If this is not a legal move or if it is Maria’s turn at the time of the call,
then you will get the verdict Wrong Answer .

If Maria has a winning strategy at the start of the game, your program should let
SocialEngineering return before the first call to GetMove() . You will then get the verdict

Accepted .

Constraints
2 ≤ n ≤ 2 ⋅ 105.

1 ≤ m ≤ 4 ⋅ 105.

The graph is connected. Every unordered pair of vertices will appear at most once as an
edge, and every edge will go between two different vertices.

Subtasks
Maria will always play perfectly in the sense that she will make winning moves whenever she has a
winning strategy. If she does not have a winning strategy, then she will try to lure your program
into making a mistake, in various clever ways. She will only resign if she has no legal moves, except
in Subtask 3.

1. (15 points) n, m ≤ 10.

2. (15 points) Everyone except Maria has at most 2 friends.

3. (20 points) Maria will resign immediately unless she has a winning strategy.

4. (25 points) n, m ≤ 100.

5. (25 points) No further constraints.

SocialEngineering (2 of 4)

Sample Interaction

Your action Grader action Explanation

-
 SocialEngineering(5, 6, {{1,4},

{1,5}, {2,4}, {2,5}, {2,3},

{3,5}})

 SocialEngineering is called
with a graph with 5 vertices and 6
edges.

 GetMove() Returns 4 Maria challenges person 4 .

 MakeMove(2) - Person 4 challenges person 2 .

 MakeMove(5) - Person 2 challenges person 5 .

 MakeMove(1) - Person 5 challenges Maria.

 GetMove() Returns 0
Maria has no legal moves, so she
resigns.

 Returns -
You have won the game, and
should let SocialEngineering
return.

Your
action

Grader action Explanation

-
 SocialEngineering(2,

1, {{1,2}})

 SocialEngineering is called with a graph with 2
vertices and 1 edge.

 Returns -
Maria has a winning strategy on this graph, so you
should return without making any GetMove() calls to
resign.

Sample Grader

The provided sample grader, grader.cpp , in the task attachment SocialEngineering.zip ,

reads the input from the standard input in the following format:

The first line contains the number of vertices, n, and the number of edges, m in the graph.

The following m lines contains two integers u and v, indicating that there is an edge between
u and v.

Sample grader reads the input and calls the SocialEngineering function in user’s solution. Note

that the sample grader does not implement Maria’s winning strategy and provided only for a
sample interaction.
To compile the sample grader with your solution, you may use the following command at the

SocialEngineering (3 of 4)

terminal prompt:
g++ -std=gnu++11 -O2 -o solution grader.cpp solution.cpp

where solution.cpp is your solution file to be submitted to CMS. To run the program with the

sample input provided in the attachment, type the following command into the terminal prompt:
./solution < input.txt

SocialEngineering (4 of 4)

