
European Girls'
Olympiad in Informatics
EGOI - 2022
Antalya / Türkiye

Cheat
Day2 Tasks

English (ISC)

Chika Wants to Cheat

Problem Name Cheat

Input File Interactive task

Output File Interactive task

Time limit 2 seconds

Memory limit 512 megabytes

Chika has a deck of q playing cards numbered with various positive integers. She wants to play
some games with her friends from the Shuchi'in Academy student council using these cards, but
she also wants to win, so she decides to secretly mark the back of the cards in her deck.

The cards are all square-shaped and of size 2 × 2, where the bottom-left corner has coordinates
(0, 0) and the top-right corner has coordinates (2, 2). Chika draws a certain pattern on the back of
each card, so that she will later know, by looking at the pattern, which number is written on the
front of the card. She draws such a pattern using the following procedure: As many times as she
wants (possibly 0 times), she picks two distinct points A and B that have integer coordinates
relative to the bottom-left corner of the card and draws a straight line segment between them.

Chika will only draw valid segments, that is, segments between two points A and B for which
there is no another point C (distinct from A and B) with integer coordinates that also lies on the
segment. For example, the segment between (0, 0) and (2, 2) is not valid as it contains point (1, 1),
but segments between (0, 0) and (1, 1) and between (1, 1) and (2, 2) are both valid, and Chika can
even draw both of them on the same pattern. Also, note that the segments have no direction: A
segment drawn from A to B is identical to both itself and the segment drawn in the reverse
direction, from B to A.

Importantly, Chika wants to make sure that she will recognize her cards regardless of how they are
rotated. A card can be rotated 0, 90, 180 or 270 degrees counter-clockwise with respect to the
original orientation.

Your task is to help Chika design the patterns for the q cards in her deck and then recognize those
cards later on.

Cheat (1 of 5)

Implementation

This is an interactive task with two stages, each stage involving a separate run of your program. You
need to implement two functions:

A BuildPattern function that returns the pattern to be drawn on the back of a given card.

This function will be called q times in the first stage.

A GetCardNumber function that returns the number of a (possibly rotated) card that carries a

given pattern drawn in the first stage. This function will be called q times in the second stage.

The first function

std::vector<std::pair<std::pair<int, int>, std::pair<int, int>>> BuildPattern(int n);

takes a single parameter n, the number that is written on the front of the card. You need to return
a std::vector containing the segments that Chika draws as a pattern on the back of the card to

recognize it later. A segment is represented as a std::pair of points, and a point is represented

as a std::pair (x,y) of integer coordinates relative to the bottom-left corner of the card, where

0 ≤ x,y ≤ 2. All segments that Chika draws need to be valid and pairwise non-identical. It is
guaranteed that all q calls to BuildPattern receive different values for the parameter n.

After receiving all the patterns for the q cards, the grader can do any of the following operations,
any number of times, on each of the patterns:

Rotate the entire pattern by 0, 90, 180 or 270 degrees counter-clockwise.
Modify the order of segments in the std::vector representation of the pattern.
Change the order of the endpoints of a segment in the pattern. (A segment drawn from A to
B may become the identical segment from B to A.)

The second function,

int GetCardNumber(std::vector<std::pair<std::pair<int, int>, std::pair<int, int>>> p);

takes a single parameter p, a std::vector of segments describing the pattern that is drawn by

Chika on the back of the card, based on the return value of an earlier call to your BuildPattern

function. The function must return the number n written on the front of the card. Recall that the
pattern p is not necessarily in the original form that is returned by BuildPattern ; it may have

been subject to the three operations mentioned above. It is also possible that the order of the
cards is different from the order they were given in the first stage, but it is guaranteed that each
card will be used exactly once.

Constraints

Cheat (2 of 5)

1 ≤ q ≤ 10 000.
1 ≤ n ≤ 67 000 000 for all calls to function BuildPattern .
Note that there exist algorithms to construct patterns such that one can recognize 67 000 000
different cards.

Scoring

Subtask 1 (2 points): n ≤ 2.
Subtask 2 (9 points): n ≤ 25.
Subtask 3 (15 points): n ≤ 1000 and the grader will not rotate the patterns between stages
1 and 2. (The grader may perform the other two operations.)
Subtask 4 (3 points): n ≤ 16 000 000 and the grader will not rotate the patterns between
stages 1 and 2. (The grader may perform the other two operations.)
Subtask 5 (24 points): n ≤ 16 000 000.
Subtask 6 (18 points): n ≤ 40 000 000.
Subtask 7 (29 points): No further constraints.

Sample Interaction

Function call Return value Explanation

First stage begins. - -

 BuildPattern(3) {{{0, 0}, {2, 1}},

{{1, 1}, {2, 0}}}

We have to create a pattern for
number 3 on the 2 × 2 sized card. We
decide to draw 2 segments:
- between (0, 0) and (2, 1),
- between (1, 1) and (2, 0).

 BuildPattern(1) {{{0, 1}, {0, 0}}} We have to create a pattern for
number 1 on the 2 × 2 sized card. We
decide to draw 1 segment:
- between (0, 1) and (0, 0).

First stage ends. - -

Second stage begins. - -

 GetCardNumber(

{{{0, 0}, {0, 1}}})

 1 We get a pattern made up of 1
segment:
- between (0, 0) and (0, 1).
This is the same pattern as we would
get from drawing the segment:
- between (0, 1) and (0, 0).
which is exactly the same pattern with
the same orientation (rotated by 0
degrees) we returned on the second

Cheat (3 of 5)

call to function BuildPattern .
Therefore, we return 1.

 GetCardNumber(

{{{1, 1}, {2, 2}},

{{1, 2}, {2, 0}}})

 3 We get a pattern made up of 2
segments:
- between (1, 1) and (2, 2),
- between (1, 2) and (2, 0).
This is the pattern we returned on the
first call to the BuildPattern

function, rotated by 90 degrees
counter-clockwise. Therefore, we
return 3.

Second stage ends. - -

The next three pictures represent, in order:

The pattern returned as output by the first call to BuildPattern :

The pattern received as parameter by the second call to GetCardNumber , which is the first
pattern after it is rotated by 90 degrees counter-clockwise.

The pattern returned as output by the second call to BuildPattern , which is also the same
pattern received as argument by the first call to GetCardNumber .

Sample Grader

The provided sample grader, grader.cpp , in the task attachment Cheat.zip , reads an integer q

from standard input and then will do the following steps q times:

Read an integer n from standard input.
Call BuildPattern(n) and store the return value in a variable p.
Call GetCardNumber(p) and print the return value to standard output.

Cheat (4 of 5)

You can modify your grader locally if you wish to do so.

To compile the sample grader with your solution, you may use the following command at the
terminal prompt:

g++ -std=gnu++11 -O2 -o solution grader.cpp solution.cpp

where solution.cpp is your solution file to be submitted to CMS. To run the program with the

sample input provided in the attachment, type the following command in the terminal prompt:

./solution < input.txt

Please note that, unlike the sample grader, the real grader on CMS will perform the first
stage and second stage in separate executions of your program.

Cheat (5 of 5)

